Cargando…
Artificial intelligence for interpretation of segments of whole body MRI in CNO: pilot study comparing radiologists versus machine learning algorithm
BACKGROUND: To initiate the development of a machine learning algorithm capable of comparing segments of pre and post pamidronate whole body MRI scans to assess treatment response and to compare the results of this algorithm with the analysis of a panel of paediatric radiologists. METHODS: Whole bod...
Autores principales: | Bhat, Chandrika S., Chopra, Mark, Andronikou, Savvas, Paul, Suvadip, Wener-Fligner, Zach, Merkoulovitch, Anna, Holjar-Erlic, Izidora, Menegotto, Flavia, Simpson, Ewan, Grier, David, Ramanan, Athimalaipet V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285749/ https://www.ncbi.nlm.nih.gov/pubmed/32517764 http://dx.doi.org/10.1186/s12969-020-00442-9 |
Ejemplares similares
-
Magnetic resonance imaging of sacroiliitis in children: frequency of findings and interobserver reliability
por: Orr, Katharine E., et al.
Publicado: (2018) -
HLA-B*27 is associated with CNO in a European cohort
por: O’Leary, Daire, et al.
Publicado: (2023) -
Accuracy of radiologists, nonradiologists, and laypeople for identifying children with cerebral cortical atrophy from “Mercator map” curved reconstructions of MRIs of the brain
por: Chacko, Anith, et al.
Publicado: (2020) -
CNO in the Universe
Publicado: (2002) -
Radiologists should support non-radiologist point-of-care ultrasonography in children: a case for involvement and collaboration
por: Andronikou, Savvas, et al.
Publicado: (2021)