Cargando…

A Two-Stage Service Migration Algorithm in Parked Vehicle Edge Computing for Internet of Things

Parked vehicle edge computing (PVEC) utilizes both idle resources in parked vehicles (PVs) and roadside units (RSUs) as service providers (SPs) to improve the performance of vehicular internet of things (IoT). However, it is difficult to make optimal service migration decisions in PVEC networks due...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Shuxin, Cheng, Meng, He, Xin, Zhou, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285760/
https://www.ncbi.nlm.nih.gov/pubmed/32422954
http://dx.doi.org/10.3390/s20102786
Descripción
Sumario:Parked vehicle edge computing (PVEC) utilizes both idle resources in parked vehicles (PVs) and roadside units (RSUs) as service providers (SPs) to improve the performance of vehicular internet of things (IoT). However, it is difficult to make optimal service migration decisions in PVEC networks due to the uncertain parking duration and resources heterogeneity of PVs. In this paper, we formulate the service migration of all the vehicles as an optimization problem with the objective of minimizing the average latency. We propose a two-stage service migration algorithm for PVEC networks, which divides the original problem into the service migration between SPs and the serving PV selection in parking lots. The service migration between SPs is transformed to an online problem based on Lyapunov optimization, where the expected parking duration of PVs is utilized. A modified Hungarian algorithm is proposed to select the PVs for migration. A series of simulation experiments based on the real-world vehicle traces are conducted to verify the superior performance of the proposed two-stage service migration (SEA) algorithm as compared with the state-of- art solutions.