Cargando…
Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants
Climate change directly affecting the Antarctic Peninsula has been reported to induce the successful colonization of ice-free lands by two Antarctic vascular plants (Deschampsia antarctica and Colobanthus quitensis). While studies have revealed the importance of microbiota for plant growth and stres...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285837/ https://www.ncbi.nlm.nih.gov/pubmed/32582056 http://dx.doi.org/10.3389/fmicb.2020.01036 |
_version_ | 1783544774788120576 |
---|---|
author | Zhang, Qian Acuña, Jacquelinne J. Inostroza, Nitza G. Duran, Paola Mora, María L. Sadowsky, Michael J. Jorquera, Milko A. |
author_facet | Zhang, Qian Acuña, Jacquelinne J. Inostroza, Nitza G. Duran, Paola Mora, María L. Sadowsky, Michael J. Jorquera, Milko A. |
author_sort | Zhang, Qian |
collection | PubMed |
description | Climate change directly affecting the Antarctic Peninsula has been reported to induce the successful colonization of ice-free lands by two Antarctic vascular plants (Deschampsia antarctica and Colobanthus quitensis). While studies have revealed the importance of microbiota for plant growth and stress tolerance in temperate climates, the role that plant-associated microbes play in the colonization of ice-free lands remains unknown. Consequently, we used high-throughput DNA sequence analyses to explore the composition, predicted functions, and interactive networks of plant-associated microbial communities among the rhizosphere, endosphere, and phyllosphere niches of D. antarctica and C. quitensis. Here we report a greater number of operational taxonomic units (OTUs), diversity, and richness in the microbial communities from the rhizosphere, relative to endosphere and phyllosphere. While taxonomic assignments showed greater relative abundances of Proteobacteria, Bacteroidetes, and Actinobacteria in plant niches, principal coordinate analysis revealed differences among the bacterial communities from the other compartments examined. More importantly, however, our results showed that most of OTUs were exclusively found in each plant niche. Major predicted functional groups of these microbiota were attributed to heterotrophy, aerobic heterotrophy, fermentation, and nitrate reduction, independent of plant niches or plant species. Co-occurrences network analyses identified 5 (e.g., Microbacteriaceae, Pseudomonaceae, Lactobacillaceae, and Corynebacteriaceae), 23 (e.g., Chitinophagaceae and Sphingomonadaceae) and 7 (e.g., Rhodospirillaceae) putative keystone taxa present in endosphere, phyllosphere, and rhizosphere, respectively. Our results revealed niche differentiation in Antarctic vascular plants, highlighting some putative microbial indicators and keystone taxa in each niche. However, more studies are required to determine the pivotal role that these microbes play in the successful colonization of ice-free lands by Antarctic plants. |
format | Online Article Text |
id | pubmed-7285837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72858372020-06-23 Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants Zhang, Qian Acuña, Jacquelinne J. Inostroza, Nitza G. Duran, Paola Mora, María L. Sadowsky, Michael J. Jorquera, Milko A. Front Microbiol Microbiology Climate change directly affecting the Antarctic Peninsula has been reported to induce the successful colonization of ice-free lands by two Antarctic vascular plants (Deschampsia antarctica and Colobanthus quitensis). While studies have revealed the importance of microbiota for plant growth and stress tolerance in temperate climates, the role that plant-associated microbes play in the colonization of ice-free lands remains unknown. Consequently, we used high-throughput DNA sequence analyses to explore the composition, predicted functions, and interactive networks of plant-associated microbial communities among the rhizosphere, endosphere, and phyllosphere niches of D. antarctica and C. quitensis. Here we report a greater number of operational taxonomic units (OTUs), diversity, and richness in the microbial communities from the rhizosphere, relative to endosphere and phyllosphere. While taxonomic assignments showed greater relative abundances of Proteobacteria, Bacteroidetes, and Actinobacteria in plant niches, principal coordinate analysis revealed differences among the bacterial communities from the other compartments examined. More importantly, however, our results showed that most of OTUs were exclusively found in each plant niche. Major predicted functional groups of these microbiota were attributed to heterotrophy, aerobic heterotrophy, fermentation, and nitrate reduction, independent of plant niches or plant species. Co-occurrences network analyses identified 5 (e.g., Microbacteriaceae, Pseudomonaceae, Lactobacillaceae, and Corynebacteriaceae), 23 (e.g., Chitinophagaceae and Sphingomonadaceae) and 7 (e.g., Rhodospirillaceae) putative keystone taxa present in endosphere, phyllosphere, and rhizosphere, respectively. Our results revealed niche differentiation in Antarctic vascular plants, highlighting some putative microbial indicators and keystone taxa in each niche. However, more studies are required to determine the pivotal role that these microbes play in the successful colonization of ice-free lands by Antarctic plants. Frontiers Media S.A. 2020-06-03 /pmc/articles/PMC7285837/ /pubmed/32582056 http://dx.doi.org/10.3389/fmicb.2020.01036 Text en Copyright © 2020 Zhang, Acuña, Inostroza, Duran, Mora, Sadowsky and Jorquera. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhang, Qian Acuña, Jacquelinne J. Inostroza, Nitza G. Duran, Paola Mora, María L. Sadowsky, Michael J. Jorquera, Milko A. Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title | Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title_full | Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title_fullStr | Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title_full_unstemmed | Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title_short | Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants |
title_sort | niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285837/ https://www.ncbi.nlm.nih.gov/pubmed/32582056 http://dx.doi.org/10.3389/fmicb.2020.01036 |
work_keys_str_mv | AT zhangqian nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT acunajacquelinnej nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT inostrozanitzag nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT duranpaola nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT moramarial nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT sadowskymichaelj nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants AT jorqueramilkoa nichedifferentiationinthecompositionpredictedfunctionandcooccurrencenetworksinbacterialcommunitiesassociatedwithantarcticvascularplants |