Cargando…
Stereo-crossed ablation guided by stereoelectroencephalography for epilepsy: comprehensive coagulations via a network of multi-electrodes
BACKGROUND: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This s...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285934/ https://www.ncbi.nlm.nih.gov/pubmed/32565913 http://dx.doi.org/10.1177/1756286420928657 |
Sumario: | BACKGROUND: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This study aimed to quantify the configurations essential for scRF-TC. METHODS: By using polyacrylamide gel (PAG), we investigated the effect of electrode conformation (angled/parallel/multiple edges) and electrode distance of creating an electrode network. Volume, time, and temperature were analyzed quantitatively with magnetic resonance imaging, video analysis, and machine learning. A network of electrodes to the pathological left area 47 was created in a patient; the seizure outcome and coverage range were further observed. RESULTS: After the compatibility test between the PAG and brain tissue, the sufficient distance of contacts (from different electrodes) for confluent lesioning was 7 mm with the PAG. Connection to the lesioning field could be achieved even with a different arrangement of electrodes. One contact could achieve at least six connections with different peripheral contacts. Coagulation with a network of electrodes can create more significant lesioning sizes, 1.81–2.12 times those of the classic approaches. The confluent lesioning field created by scRF-TC had a volume of 38.7 cm(3); the low metabolic area was adequately covered. The representative patient was free of seizures throughout the 12-month follow up. CONCLUSION: Lesioning with electrodes in a network manner is practical for adequate 3D coverage. A secondary craniotomy could be potentially prevented by combining both monitoring and a large volume of lesions. |
---|