Cargando…
Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA
BACKGROUND: The accurate identification of the exon/intron boundaries is critical for the correct annotation of genes with multiple exons. Donor and acceptor splice sites (SS) demarcate these boundaries. Therefore, deriving accurate computational models to predict the SS are useful for functional an...
Autores principales: | Albaradei, Somayah, Magana-Mora, Arturo, Thafar, Maha, Uludag, Mahmut, Bajic, Vladimir B., Gojobori, Takashi, Essack, Magbubah, Jankovic, Boris R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285987/ https://www.ncbi.nlm.nih.gov/pubmed/32550561 http://dx.doi.org/10.1016/j.gene.2020.100035 |
Ejemplares similares
-
MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data
por: Albaradei, Somayah, et al.
Publicado: (2022) -
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021) -
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023) -
MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
por: Albaradei, Somayah, et al.
Publicado: (2021)