Cargando…
Putative circumsporozoite protein (CSP) of Plasmodium vivax is considerably distinct from the well-known CSP and plays a role in the protein ubiquitination pathway
Amidst technical challenges which limit successful culture and genetic manipulation of P. vivax parasites, we used a computational approach to identify a critical target with evolutionary significance. The putative circumsporozoite protein on chromosome 13 of P. vivax (PvpuCSP)is distinct from the w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285988/ https://www.ncbi.nlm.nih.gov/pubmed/32550551 http://dx.doi.org/10.1016/j.gene.2019.100024 |
Sumario: | Amidst technical challenges which limit successful culture and genetic manipulation of P. vivax parasites, we used a computational approach to identify a critical target with evolutionary significance. The putative circumsporozoite protein on chromosome 13 of P. vivax (PvpuCSP)is distinct from the well-known vaccine candidate PfCSP. The aim of this study was to understand the role of PvpuCSP and its relatedness to the well-known CSP. The study revealed PvpuCSP as a membrane bound E3 ubiquitin ligase involved in ubiquitination. It has a species-specific tetra-peptide unit which is differentially repeated in various P. vivax strains. The PvpuCSP is different from CSP in terms of stage-specific expression and function. Since E3 ubiquitin ligases are known antimalarial drug targets targeting the proteasome pathway, PvpuCSP, with evolutionary connotation and a key role in orchestrating protein degradation in P. vivax, can be explored as a potential drug target. |
---|