Cargando…
Brain network constraints and recurrent neural networks reproduce unique trajectories and state transitions seen over the span of minutes in resting-state fMRI
Large-scale patterns of spontaneous whole-brain activity seen in resting-state functional magnetic resonance imaging (rs-fMRI) are in part believed to arise from neural populations interacting through the structural network (Honey, Kötter, Breakspear, & Sporns, 2007). Generative models that simu...
Autores principales: | Kashyap, Amrit, Keilholz, Shella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286308/ https://www.ncbi.nlm.nih.gov/pubmed/32537536 http://dx.doi.org/10.1162/netn_a_00129 |
Ejemplares similares
-
Dynamic properties of simulated brain network models and empirical resting-state data
por: Kashyap, Amrit, et al.
Publicado: (2019) -
Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder
por: Zhang, Xiaodi, et al.
Publicado: (2021) -
Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics
por: Maltbie, Eric, et al.
Publicado: (2022) -
Editorial: Origins of the Resting-State fMRI Signal
por: Chen, J. Jean, et al.
Publicado: (2020) -
A deep learning approach to estimating initial conditions of Brain Network Models in reference to measured fMRI data
por: Kashyap, Amrit, et al.
Publicado: (2023)