Cargando…
Interpretable brain age prediction using linear latent variable models of functional connectivity
Neuroimaging-driven prediction of brain age, defined as the predicted biological age of a subject using only brain imaging data, is an exciting avenue of research. In this work we seek to build models of brain age based on functional connectivity while prioritizing model interpretability and underst...
Autores principales: | Monti, Ricardo Pio, Gibberd, Alex, Roy, Sandipan, Nunes, Matthew, Lorenz, Romy, Leech, Robert, Ogawa, Takeshi, Kawanabe, Motoaki, Hyvärinen, Aapo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286502/ https://www.ncbi.nlm.nih.gov/pubmed/32520931 http://dx.doi.org/10.1371/journal.pone.0232296 |
Ejemplares similares
-
Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis
por: Hirayama, Jun-ichiro, et al.
Publicado: (2016) -
Decoding Time-Varying Functional Connectivity Networks via Linear Graph Embedding Methods
por: Monti, Ricardo P., et al.
Publicado: (2017) -
Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation
por: Kauppi, Jukka-Pekka, et al.
Publicado: (2015) -
Dissociating frontoparietal brain networks with neuroadaptive Bayesian optimization
por: Lorenz, Romy, et al.
Publicado: (2018) -
Non-linear canonical correlation for joint analysis of MEG signals from two subjects
por: Campi, Cristina, et al.
Publicado: (2013)