Cargando…

Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging

Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is li...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Harrisson D. A., Zabala Gutiérrez, Irene, Shen, Yingli, Lifante, José, Ximendes, Erving, Laurenti, Marco, Méndez-González, Diego, Melle, Sonia, Calderón, Oscar G., López Cabarcos, Enrique, Fernández, Nuria, Chaves-Coira, Irene, Lucena-Agell, Daniel, Monge, Luis, Mackenzie, Mark D., Marqués-Hueso, José, Jones, Callum M. S., Jacinto, Carlos, del Rosal, Blanca, Kar, Ajoy K., Rubio-Retama, Jorge, Jaque, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286912/
https://www.ncbi.nlm.nih.gov/pubmed/32523065
http://dx.doi.org/10.1038/s41467-020-16333-2
_version_ 1783544956872294400
author Santos, Harrisson D. A.
Zabala Gutiérrez, Irene
Shen, Yingli
Lifante, José
Ximendes, Erving
Laurenti, Marco
Méndez-González, Diego
Melle, Sonia
Calderón, Oscar G.
López Cabarcos, Enrique
Fernández, Nuria
Chaves-Coira, Irene
Lucena-Agell, Daniel
Monge, Luis
Mackenzie, Mark D.
Marqués-Hueso, José
Jones, Callum M. S.
Jacinto, Carlos
del Rosal, Blanca
Kar, Ajoy K.
Rubio-Retama, Jorge
Jaque, Daniel
author_facet Santos, Harrisson D. A.
Zabala Gutiérrez, Irene
Shen, Yingli
Lifante, José
Ximendes, Erving
Laurenti, Marco
Méndez-González, Diego
Melle, Sonia
Calderón, Oscar G.
López Cabarcos, Enrique
Fernández, Nuria
Chaves-Coira, Irene
Lucena-Agell, Daniel
Monge, Luis
Mackenzie, Mark D.
Marqués-Hueso, José
Jones, Callum M. S.
Jacinto, Carlos
del Rosal, Blanca
Kar, Ajoy K.
Rubio-Retama, Jorge
Jaque, Daniel
author_sort Santos, Harrisson D. A.
collection PubMed
description Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag(2)S superdots) derived from chemically synthesized Ag(2)S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag(2)S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm(−2)) and doses (<0.5 mg kg(−1)), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.
format Online
Article
Text
id pubmed-7286912
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72869122020-06-16 Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging Santos, Harrisson D. A. Zabala Gutiérrez, Irene Shen, Yingli Lifante, José Ximendes, Erving Laurenti, Marco Méndez-González, Diego Melle, Sonia Calderón, Oscar G. López Cabarcos, Enrique Fernández, Nuria Chaves-Coira, Irene Lucena-Agell, Daniel Monge, Luis Mackenzie, Mark D. Marqués-Hueso, José Jones, Callum M. S. Jacinto, Carlos del Rosal, Blanca Kar, Ajoy K. Rubio-Retama, Jorge Jaque, Daniel Nat Commun Article Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag(2)S superdots) derived from chemically synthesized Ag(2)S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag(2)S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm(−2)) and doses (<0.5 mg kg(−1)), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing. Nature Publishing Group UK 2020-06-10 /pmc/articles/PMC7286912/ /pubmed/32523065 http://dx.doi.org/10.1038/s41467-020-16333-2 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Santos, Harrisson D. A.
Zabala Gutiérrez, Irene
Shen, Yingli
Lifante, José
Ximendes, Erving
Laurenti, Marco
Méndez-González, Diego
Melle, Sonia
Calderón, Oscar G.
López Cabarcos, Enrique
Fernández, Nuria
Chaves-Coira, Irene
Lucena-Agell, Daniel
Monge, Luis
Mackenzie, Mark D.
Marqués-Hueso, José
Jones, Callum M. S.
Jacinto, Carlos
del Rosal, Blanca
Kar, Ajoy K.
Rubio-Retama, Jorge
Jaque, Daniel
Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title_full Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title_fullStr Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title_full_unstemmed Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title_short Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
title_sort ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286912/
https://www.ncbi.nlm.nih.gov/pubmed/32523065
http://dx.doi.org/10.1038/s41467-020-16333-2
work_keys_str_mv AT santosharrissonda ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT zabalagutierrezirene ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT shenyingli ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT lifantejose ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT ximendeserving ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT laurentimarco ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT mendezgonzalezdiego ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT mellesonia ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT calderonoscarg ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT lopezcabarcosenrique ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT fernandeznuria ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT chavescoirairene ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT lucenaagelldaniel ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT mongeluis ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT mackenziemarkd ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT marqueshuesojose ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT jonescallumms ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT jacintocarlos ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT delrosalblanca ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT karajoyk ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT rubioretamajorge ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging
AT jaquedaniel ultrafastphotochemistryproducessuperbrightshortwaveinfrareddotsforlowdoseinvivoimaging