Cargando…

Deeper Central Reaming May Enhance Initial Acetabular Shell Fixation

BACKGROUND: The initial stability of press-fit acetabular components is partially determined by the reaming technique. Nonhemispherical (NHS) acetabular shells, which have a larger radius at the rim than the dome, often require larger reaming preparations than the same-sized hemispherical (HS) shell...

Descripción completa

Detalles Bibliográficos
Autores principales: Hickernell, Thomas R., Kaidi, Austin C., Davignon, Robert, Geller, Jeffrey A., Cooper, H. John, Shah, Roshan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286971/
https://www.ncbi.nlm.nih.gov/pubmed/32548228
http://dx.doi.org/10.1016/j.artd.2020.03.012
Descripción
Sumario:BACKGROUND: The initial stability of press-fit acetabular components is partially determined by the reaming technique. Nonhemispherical (NHS) acetabular shells, which have a larger radius at the rim than the dome, often require larger reaming preparations than the same-sized hemispherical (HS) shells. Furthermore, deeper central reaming may provide a more stable press fit. Using a reproducible, in vitro protocol, we compared initial shell stability under different reaming techniques with HS and NHS acetabular components. METHODS: Cavities for 54-mm NHS and 56-mm HS acetabular components were premachined in 20-pcf Sawbones blocks. Acetabular cavities included diameters of 54, 55, “54+,” and “55+”. “+” indicates a cavity with a 2-mm smaller diameter that is 2-mm deeper. A 4750N statically applied force seated shells to a height that was comparable with shell height after an orthopaedic surgeon’s manual impaction. Force required to dislodge shells was assessed via a straight torque-out with a linear load. RESULTS: Increased preparation depth (+) was associated with deeper shell seating in all groups. Deeper central reaming increased required lever-out force for all groups. Overall, HS and NHS implants prepared with 55 + preparation had the highest lever-out forces, although this was not significantly higher than those with 54+. CONCLUSIONS: In 20-pcf Sawbones, representing dense bone, overreaming depth by 1-mm improved initial seating measurements. In both HS and NHS acetabular shells, seating depth and required lever-out force were higher in the “+” category. It is unclear, however, whether a decreased diameter ream increased seating stability (55+ vs 54+). Clinically, this deeper central reaming technique may help initial acetabular stability.