Cargando…
Fungal-like particles and macrophage-conditioned medium are inflammatory elicitors for 3T3-L1 adipocytes
Adipocytes from white-adipose tissue are known to produce inflammatory cytokines, which play a major role in energy balance and metabolism. While they can respond to pathogen-associated molecular pattern (PAMPs) such as lipopolysaccharide (LPS) from bacteria, it is not known whether adipocytes can b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287055/ https://www.ncbi.nlm.nih.gov/pubmed/32523023 http://dx.doi.org/10.1038/s41598-020-66283-4 |
Sumario: | Adipocytes from white-adipose tissue are known to produce inflammatory cytokines, which play a major role in energy balance and metabolism. While they can respond to pathogen-associated molecular pattern (PAMPs) such as lipopolysaccharide (LPS) from bacteria, it is not known whether adipocytes can be stimulated by fungal cells. Previously, adipocytes were shown to produce toll-like receptor 2 (TLR2), a β-glucan receptor, suggesting that they could respond to β-glucan on the fungal cell wall. In this study, we show that heat-killed yeast induce an inflammatory response in adipocytes. Using fungal-like particles, namely laminarin-coated beads (LCB), we find that these particles trigger the expression of many key inflammatory genes in dose- and time-dependent fashions in adipocytes. These results suggest that β-glucan on the fungal cell wall is sufficient to elicit an inflammatory response in adipocytes. In addition, we show that both LCB and LCB-treated conditioned medium from RAW 264.7 murine macrophages (LCB-RM) induce the expression of those inflammatory genes through IKKβ-IκBα proteins. Together, we conclude that the fungal-like particles and the conditioned medium elicit an inflammatory response in adipocytes through the canonical or classical NF-κB pathway. |
---|