Cargando…
Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images
Deep neural networks can extract clinical information, such as diabetic retinopathy status and individual characteristics (e.g. age and sex), from retinal images. Here, we report the first study to train deep learning models with retinal images from 3,000 Qatari citizens participating in the Qatar B...
Autores principales: | Gerrits, Nele, Elen, Bart, Craenendonck, Toon Van, Triantafyllidou, Danai, Petropoulos, Ioannis N., Malik, Rayaz A., Boever, Patrick De |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287116/ https://www.ncbi.nlm.nih.gov/pubmed/32523046 http://dx.doi.org/10.1038/s41598-020-65794-4 |
Ejemplares similares
-
Publisher Correction: Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images
por: Gerrits, Nele, et al.
Publicado: (2021) -
Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection
por: Van Craenendonck, Toon, et al.
Publicado: (2020) -
Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke
por: Khan, Adnan, et al.
Publicado: (2022) -
Artificial Intelligence Software for Diabetic Eye Screening: Diagnostic Performance and Impact of Stratification
por: Peeters, Freya, et al.
Publicado: (2023) -
Deep learning on fundus images detects glaucoma beyond the optic disc
por: Hemelings, Ruben, et al.
Publicado: (2021)