Cargando…
Self-healing capacity of fiber-reinforced calcium phosphate cements
A major problem concerning the mechanical properties of calcium phosphate cements (CPC) is related to their inherent brittleness, which limits their applicability to non-load bearing bone defects. In this work the preparation of a damage tolerant CPC is presented, where the incorporation of function...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287135/ https://www.ncbi.nlm.nih.gov/pubmed/32523063 http://dx.doi.org/10.1038/s41598-020-66207-2 |
Sumario: | A major problem concerning the mechanical properties of calcium phosphate cements (CPC) is related to their inherent brittleness, which limits their applicability to non-load bearing bone defects. In this work the preparation of a damage tolerant CPC is presented, where the incorporation of functionalized carbon fibers facilitates steady state flat crack propagation with crack openings below 10 µm. A subsequent self-healing process in simulated body fluid, that mimics the in vivo mineralization of bioactive surfaces, closes the cracks and completely restores the mechanical properties. Hereby, two pathways of self-healing are presented: i) intrinsic healing that bases on the inherent bioactive properties of the cement matrix and chemically treated fibers, and ii) capsule based extrinsic healing, where H(2)PO(4)(-) is released as an initiator for the apatite formation. Such damage tolerant CPCs with self-healing capacity are of particular interest to increase the lifetime of implants as well as in the field of load-bearing bioceramics. |
---|