Cargando…

Self-healing capacity of fiber-reinforced calcium phosphate cements

A major problem concerning the mechanical properties of calcium phosphate cements (CPC) is related to their inherent brittleness, which limits their applicability to non-load bearing bone defects. In this work the preparation of a damage tolerant CPC is presented, where the incorporation of function...

Descripción completa

Detalles Bibliográficos
Autores principales: Boehm, Anne V., Meininger, Susanne, Gbureck, Uwe, Müller, Frank A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287135/
https://www.ncbi.nlm.nih.gov/pubmed/32523063
http://dx.doi.org/10.1038/s41598-020-66207-2
Descripción
Sumario:A major problem concerning the mechanical properties of calcium phosphate cements (CPC) is related to their inherent brittleness, which limits their applicability to non-load bearing bone defects. In this work the preparation of a damage tolerant CPC is presented, where the incorporation of functionalized carbon fibers facilitates steady state flat crack propagation with crack openings below 10 µm. A subsequent self-healing process in simulated body fluid, that mimics the in vivo mineralization of bioactive surfaces, closes the cracks and completely restores the mechanical properties. Hereby, two pathways of self-healing are presented: i) intrinsic healing that bases on the inherent bioactive properties of the cement matrix and chemically treated fibers, and ii) capsule based extrinsic healing, where H(2)PO(4)(-) is released as an initiator for the apatite formation. Such damage tolerant CPCs with self-healing capacity are of particular interest to increase the lifetime of implants as well as in the field of load-bearing bioceramics.