Cargando…
Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico
Catechol 1,2 dioxygenases (C12DOs) have been studied for its ability to cleavage the benzene ring of catechol, the main intermediate in the degradation of aromatic compounds derived from aerobic degradation of hydrocarbons. Here we report the genome sequence of the marine bacterium Pseudomonas stutz...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287156/ https://www.ncbi.nlm.nih.gov/pubmed/32582076 http://dx.doi.org/10.3389/fmicb.2020.01100 |
_version_ | 1783545010108497920 |
---|---|
author | Rodríguez-Salazar, Julieta Almeida-Juarez, Arisbeth G. Ornelas-Ocampo, Katya Millán-López, Sofía Raga-Carbajal, Enrique Rodríguez-Mejía, José Luis Muriel-Millán, Luis Felipe Godoy-Lozano, E. Ernestina Rivera-Gómez, Nancy Rudiño-Piñera, Enrique Pardo-López, Liliana |
author_facet | Rodríguez-Salazar, Julieta Almeida-Juarez, Arisbeth G. Ornelas-Ocampo, Katya Millán-López, Sofía Raga-Carbajal, Enrique Rodríguez-Mejía, José Luis Muriel-Millán, Luis Felipe Godoy-Lozano, E. Ernestina Rivera-Gómez, Nancy Rudiño-Piñera, Enrique Pardo-López, Liliana |
author_sort | Rodríguez-Salazar, Julieta |
collection | PubMed |
description | Catechol 1,2 dioxygenases (C12DOs) have been studied for its ability to cleavage the benzene ring of catechol, the main intermediate in the degradation of aromatic compounds derived from aerobic degradation of hydrocarbons. Here we report the genome sequence of the marine bacterium Pseudomonas stutzeri GOM2, isolated from the southwestern Gulf of Mexico, and the biochemical characterization of its C12DO (PsC12DO). The catA gene, encoding PsC12DO of 312 amino acid residues, was cloned and expressed in Escherichia coli. Many C12DOs have been described as dimeric enzymes including those present in Pseudomonas species. The purified PsC12DO enzyme was found as an active trimer, with a molecular mass of 107 kDa. Increasing NaCl concentration in the enzyme reaction gradually reduced activity; in high salt concentrations (0.7 M NaCl) quaternary structural analysis determined that the enzyme changes to a dimeric arrangement and causes a 51% decrease in specific activity on catechol substrate. In comparison with other C12DOs, our enzyme showed a broad range of action for PsC12DO in solutions with pH values ranging from neutral to alkaline (70%). The enzyme is still active after incubation at 50°C for 30 min and in low temperatures to long term storage after 6 weeks at 4°C (61%). EDTA or Ca(2+) inhibitors cause no drastic changes on residual activity; nevertheless, the activity of the enzyme was affected by metal ions Fe(3+), Zn(2+) and was completely inhibited by Hg(2+). Under optimal conditions the k(cat) and K(m) values were 16.13 s(–1) and 13.2 μM, respectively. To our knowledge, this is the first report describing the characterization of a marine C12DOs from P. stutzeri isolated from the Gulf of Mexico that is active in a trimeric state. We consider that our enzyme has important features to be used in environments in presence of EDTA, metals and salinity conditions. |
format | Online Article Text |
id | pubmed-7287156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72871562020-06-23 Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico Rodríguez-Salazar, Julieta Almeida-Juarez, Arisbeth G. Ornelas-Ocampo, Katya Millán-López, Sofía Raga-Carbajal, Enrique Rodríguez-Mejía, José Luis Muriel-Millán, Luis Felipe Godoy-Lozano, E. Ernestina Rivera-Gómez, Nancy Rudiño-Piñera, Enrique Pardo-López, Liliana Front Microbiol Microbiology Catechol 1,2 dioxygenases (C12DOs) have been studied for its ability to cleavage the benzene ring of catechol, the main intermediate in the degradation of aromatic compounds derived from aerobic degradation of hydrocarbons. Here we report the genome sequence of the marine bacterium Pseudomonas stutzeri GOM2, isolated from the southwestern Gulf of Mexico, and the biochemical characterization of its C12DO (PsC12DO). The catA gene, encoding PsC12DO of 312 amino acid residues, was cloned and expressed in Escherichia coli. Many C12DOs have been described as dimeric enzymes including those present in Pseudomonas species. The purified PsC12DO enzyme was found as an active trimer, with a molecular mass of 107 kDa. Increasing NaCl concentration in the enzyme reaction gradually reduced activity; in high salt concentrations (0.7 M NaCl) quaternary structural analysis determined that the enzyme changes to a dimeric arrangement and causes a 51% decrease in specific activity on catechol substrate. In comparison with other C12DOs, our enzyme showed a broad range of action for PsC12DO in solutions with pH values ranging from neutral to alkaline (70%). The enzyme is still active after incubation at 50°C for 30 min and in low temperatures to long term storage after 6 weeks at 4°C (61%). EDTA or Ca(2+) inhibitors cause no drastic changes on residual activity; nevertheless, the activity of the enzyme was affected by metal ions Fe(3+), Zn(2+) and was completely inhibited by Hg(2+). Under optimal conditions the k(cat) and K(m) values were 16.13 s(–1) and 13.2 μM, respectively. To our knowledge, this is the first report describing the characterization of a marine C12DOs from P. stutzeri isolated from the Gulf of Mexico that is active in a trimeric state. We consider that our enzyme has important features to be used in environments in presence of EDTA, metals and salinity conditions. Frontiers Media S.A. 2020-06-04 /pmc/articles/PMC7287156/ /pubmed/32582076 http://dx.doi.org/10.3389/fmicb.2020.01100 Text en Copyright © 2020 Rodríguez-Salazar, Almeida-Juarez, Ornelas-Ocampo, Millán-López, Raga-Carbajal, Rodríguez-Mejía, Muriel-Millán, Godoy-Lozano, Rivera-Gómez, Rudiño-Piñera and Pardo-López. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Rodríguez-Salazar, Julieta Almeida-Juarez, Arisbeth G. Ornelas-Ocampo, Katya Millán-López, Sofía Raga-Carbajal, Enrique Rodríguez-Mejía, José Luis Muriel-Millán, Luis Felipe Godoy-Lozano, E. Ernestina Rivera-Gómez, Nancy Rudiño-Piñera, Enrique Pardo-López, Liliana Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title | Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title_full | Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title_fullStr | Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title_full_unstemmed | Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title_short | Characterization of a Novel Functional Trimeric Catechol 1,2-Dioxygenase From a Pseudomonas stutzeri Isolated From the Gulf of Mexico |
title_sort | characterization of a novel functional trimeric catechol 1,2-dioxygenase from a pseudomonas stutzeri isolated from the gulf of mexico |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287156/ https://www.ncbi.nlm.nih.gov/pubmed/32582076 http://dx.doi.org/10.3389/fmicb.2020.01100 |
work_keys_str_mv | AT rodriguezsalazarjulieta characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT almeidajuarezarisbethg characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT ornelasocampokatya characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT millanlopezsofia characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT ragacarbajalenrique characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT rodriguezmejiajoseluis characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT murielmillanluisfelipe characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT godoylozanoeernestina characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT riveragomeznancy characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT rudinopineraenrique characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico AT pardolopezliliana characterizationofanovelfunctionaltrimericcatechol12dioxygenasefromapseudomonasstutzeriisolatedfromthegulfofmexico |