Cargando…

Role of Natural Stone Wastes and Minerals in the Alkali Activation Process: A Review

This review aims to provide a comprehensive assessment concerning alkali activation of natural stone wastes and minerals. In particular, the structure of the review is divided into two main sections in which the works dealing with alumino-silicate and carbonatic stones are discussed, respectively. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Coppola, Bartolomeo, Tulliani, Jean-Marc, Antonaci, Paola, Palmero, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287640/
https://www.ncbi.nlm.nih.gov/pubmed/32429168
http://dx.doi.org/10.3390/ma13102284
Descripción
Sumario:This review aims to provide a comprehensive assessment concerning alkali activation of natural stone wastes and minerals. In particular, the structure of the review is divided into two main sections in which the works dealing with alumino-silicate and carbonatic stones are discussed, respectively. Alumino-silicate stones are generally composed of quartz and feldspars, while carbonatic stones are mainly made of calcite and dolomite. The role of these minerals in the alkali activation process is discussed, attesting their influence in the development of the final product properties. In most of the works, authors use mineral additions only as fillers or aggregates and, in some cases, as a partial substitution of more traditional raw powders, such as metakaolin, fly ash, and granulated blast furnace slag. However, a few works in which alumino-silicate and carbonatic stone wastes are used as the main active components are discussed as well. Not only the raw materials, but also the entire alkali activation process and the curing conditions adopted in the literature studies here reviewed are systematically analyzed to improve the understanding of their effect on the physical, mechanical, and durability properties of the final products and to eventually foster the reuse of natural stone wastes for the purposes of sustainability in different applications.