Cargando…
Special Issue: Conductive Polymers: Materials and Applications
Intrinsically conductive polymers (CPs) combine the inherent mechanical properties of organic polymers with charge transport, opto-electronic and redox properties that can be easily tuned up to those typical of semiconductors and metals. The control of the morphology at the nanoscale and the design...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287700/ https://www.ncbi.nlm.nih.gov/pubmed/32443686 http://dx.doi.org/10.3390/ma13102344 |
Sumario: | Intrinsically conductive polymers (CPs) combine the inherent mechanical properties of organic polymers with charge transport, opto-electronic and redox properties that can be easily tuned up to those typical of semiconductors and metals. The control of the morphology at the nanoscale and the design of CP-based composite materials have expanded their multifunctional character even further. These virtues have been exploited to advantage in opto-electronic devices, energy-conversion and storage systems, sensors and actuators, and more recently in applications related to biomedical and separation science or adsorbents for pollutant removal. The special issue “Conductive Polymers: Materials and Applications” was compiled by gathering contributions that cover the latest advances in the field, with special emphasis upon emerging applications. |
---|