Cargando…
Computationally Efficient Wildfire Detection Method Using a Deep Convolutional Network Pruned via Fourier Analysis
In this paper, we propose a deep convolutional neural network for camera based wildfire detection. We train the neural network via transfer learning and use window based analysis strategy to increase the fire detection rate. To achieve computational efficiency, we calculate frequency response of the...
Autores principales: | Pan, Hongyi, Badawi, Diaa, Cetin, Ahmet Enis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287837/ https://www.ncbi.nlm.nih.gov/pubmed/32443739 http://dx.doi.org/10.3390/s20102891 |
Ejemplares similares
-
A Pruning Method for Deep Convolutional Network Based on Heat Map Generation Metrics
por: Zhang, Wenli, et al.
Publicado: (2022) -
Retrain or Not Retrain? - Efficient Pruning Methods of Deep CNN Networks
por: Pietron, Marcin, et al.
Publicado: (2020) -
Lossless Reconstruction of Convolutional Neural Network for Channel-Based Network Pruning
por: Lee, Donghyeon, et al.
Publicado: (2023) -
Deepprune: Learning Efficient and Interpretable Convolutional Networks Through Weight Pruning for Predicting DNA-Protein Binding
por: Luo, Xiao, et al.
Publicado: (2019) -
LdsConv: Learned Depthwise Separable Convolutions by Group Pruning
por: Lin, Wenxiang, et al.
Publicado: (2020)