Cargando…
Suitability of Automatic Photogrammetric Reconstruction Configurations for Small Archaeological Remains
Three-dimensional (3D) reconstruction is a useful technique for the documentation, characterization, and evaluation of small archeological objects. In this research, a comparison among different photogrammetric setups that use different lenses (macro and standard zoom) and dense point cloud generati...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287877/ https://www.ncbi.nlm.nih.gov/pubmed/32455883 http://dx.doi.org/10.3390/s20102936 |
Sumario: | Three-dimensional (3D) reconstruction is a useful technique for the documentation, characterization, and evaluation of small archeological objects. In this research, a comparison among different photogrammetric setups that use different lenses (macro and standard zoom) and dense point cloud generation calibration processes for real specific objects of archaeological interest with different textures, geometries, and materials is raised using an automated data collection. The data acquisition protocol is carried out from a platform with control points referenced with a metrology absolute arm to accurately define a common spatial reference system. The photogrammetric reconstruction is performed considering a camera pre-calibration as well as a self-calibration. The latter is common for most data acquisition situations in archaeology. The results for the different lenses and calibration processes are compared based on a robust statistical analysis, which entails the estimation of both standard Gaussian and non-parametric estimators, to assess the accuracy potential of different configurations. As a result, 95% of the reconstructed points show geometric discrepancies lower than 0.85 mm for the most unfavorable case and less than 0.35 mm for the other cases. |
---|