Cargando…
Synthesis, Characterization and Bioassay of Novel Substituted 1-(3-(1,3-Thiazol-2-yl)phenyl)-5-oxopyrrolidines
Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288019/ https://www.ncbi.nlm.nih.gov/pubmed/32456041 http://dx.doi.org/10.3390/molecules25102433 |
Sumario: | Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thiocarbamide or benzenecarbothioamide, as well as tioureido acid. A series of substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines with pyrrolidinone, thiazole, pyrrole, 1,2,4-triazole, oxadiazole and benzimidazole heterocyclic fragments were synthesized and their antibacterial properties were evaluated against Gram-positive strains of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica enteritidis. The vast majority of compounds exhibited between twofold and 16-fold increased antibacterial effect against the test-cultures when compared with Oxytetracycline. |
---|