Cargando…

Dilute-and-Shoot HPLC-UV Method for Determination of Urinary Creatinine as a Normalization Tool in Mycotoxin Biomonitoring in Pigs

A simple, rapid, and accurate HPLC-UV method was developed for the determination of creatinine in pig urine. Usually, it is determined in urine in biomonitoring of xenobiotics to correct for variations in dilutions of urine samples. The colorimetric method (based on Jaffe reaction), which was mainly...

Descripción completa

Detalles Bibliográficos
Autores principales: Tkaczyk, Agnieszka, Jedziniak, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288144/
https://www.ncbi.nlm.nih.gov/pubmed/32456313
http://dx.doi.org/10.3390/molecules25102445
Descripción
Sumario:A simple, rapid, and accurate HPLC-UV method was developed for the determination of creatinine in pig urine. Usually, it is determined in urine in biomonitoring of xenobiotics to correct for variations in dilutions of urine samples. The colorimetric method (based on Jaffe reaction), which was mainly used for this purpose in mycotoxin biomonitoring, is not a reliable approach for pig urine. Therefore, a novel and accurate HPLC method for creatinine determination was developed. The sample preparation was based on the dilute and shoot approach. An HPLC separation was performed with a porous graphitic carbon column with an aqueous mobile phase to achieve satisfactory retention time for creatinine. The method has been successfully validated, applied for the determination of creatinine in pig urine, and compared with other methods commonly used for that purpose—a colorimetric method based on Jaffe reaction and commercial ELISA test. The developed HPLC method shows the highest precision and accuracy for pig urine samples. Finally, the method was applied as a normalization tool in LC-MS/MS mycotoxin biomarkers analysis. The standardization to a constant creatinine level (0.5 mg/mL) enables similar matrix effects for eleven mycotoxin biomarkers for pig urine samples with different creatinine levels.