Cargando…
A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues
We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the p...
Autores principales: | González, David, García-González, Alberto, Chinesta, Francisco, Cueto, Elías |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288154/ https://www.ncbi.nlm.nih.gov/pubmed/32443551 http://dx.doi.org/10.3390/ma13102319 |
Ejemplares similares
-
A comparison of hyperelastic constitutive models applicable to brain and fat tissues
por: Mihai, L. Angela, et al.
Publicado: (2015) -
Visco-hyperelastic constitutive modeling of soft tissues based on short and long-term internal variables
por: Ahsanizadeh, Sahand, et al.
Publicado: (2015) -
Reduced-order modeling of soft robots
por: Chenevier, Jean, et al.
Publicado: (2018) -
Data-Driven GENERIC Modeling of Poroviscoelastic Materials
por: Ghnatios, Chady, et al.
Publicado: (2019) -
A viscoelastic anisotropic hyperelastic constitutive model of the human cornea
por: Whitford, Charles, et al.
Publicado: (2017)