Cargando…

Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data

There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and d...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yu, Chen, Sai, Wang, Xingyan, Liu, Mengzhen, Iacono, William G., Hewitt, John K., Hokanson, John E., Krauter, Kenneth, Laakso, Markku, Li, Kevin W., Lutz, Sharon M., McGue, Matthew, Pandit, Anita, Zajac, Gregory J.M., Boehnke, Michael, Abecasis, Goncalo R., Vrieze, Scott I., Jiang, Bibo, Zhan, Xiaowei, Liu, Dajiang J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288273/
https://www.ncbi.nlm.nih.gov/pubmed/32466134
http://dx.doi.org/10.3390/genes11050586
_version_ 1783545240823529472
author Jiang, Yu
Chen, Sai
Wang, Xingyan
Liu, Mengzhen
Iacono, William G.
Hewitt, John K.
Hokanson, John E.
Krauter, Kenneth
Laakso, Markku
Li, Kevin W.
Lutz, Sharon M.
McGue, Matthew
Pandit, Anita
Zajac, Gregory J.M.
Boehnke, Michael
Abecasis, Goncalo R.
Vrieze, Scott I.
Jiang, Bibo
Zhan, Xiaowei
Liu, Dajiang J.
author_facet Jiang, Yu
Chen, Sai
Wang, Xingyan
Liu, Mengzhen
Iacono, William G.
Hewitt, John K.
Hokanson, John E.
Krauter, Kenneth
Laakso, Markku
Li, Kevin W.
Lutz, Sharon M.
McGue, Matthew
Pandit, Anita
Zajac, Gregory J.M.
Boehnke, Michael
Abecasis, Goncalo R.
Vrieze, Scott I.
Jiang, Bibo
Zhan, Xiaowei
Liu, Dajiang J.
author_sort Jiang, Yu
collection PubMed
description There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.
format Online
Article
Text
id pubmed-7288273
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72882732020-06-17 Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data Jiang, Yu Chen, Sai Wang, Xingyan Liu, Mengzhen Iacono, William G. Hewitt, John K. Hokanson, John E. Krauter, Kenneth Laakso, Markku Li, Kevin W. Lutz, Sharon M. McGue, Matthew Pandit, Anita Zajac, Gregory J.M. Boehnke, Michael Abecasis, Goncalo R. Vrieze, Scott I. Jiang, Bibo Zhan, Xiaowei Liu, Dajiang J. Genes (Basel) Article There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online. MDPI 2020-05-25 /pmc/articles/PMC7288273/ /pubmed/32466134 http://dx.doi.org/10.3390/genes11050586 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jiang, Yu
Chen, Sai
Wang, Xingyan
Liu, Mengzhen
Iacono, William G.
Hewitt, John K.
Hokanson, John E.
Krauter, Kenneth
Laakso, Markku
Li, Kevin W.
Lutz, Sharon M.
McGue, Matthew
Pandit, Anita
Zajac, Gregory J.M.
Boehnke, Michael
Abecasis, Goncalo R.
Vrieze, Scott I.
Jiang, Bibo
Zhan, Xiaowei
Liu, Dajiang J.
Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title_full Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title_fullStr Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title_full_unstemmed Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title_short Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data
title_sort association analysis and meta-analysis of multi-allelic variants for large-scale sequence data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288273/
https://www.ncbi.nlm.nih.gov/pubmed/32466134
http://dx.doi.org/10.3390/genes11050586
work_keys_str_mv AT jiangyu associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT chensai associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT wangxingyan associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT liumengzhen associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT iaconowilliamg associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT hewittjohnk associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT hokansonjohne associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT krauterkenneth associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT laaksomarkku associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT likevinw associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT lutzsharonm associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT mcguematthew associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT panditanita associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT zajacgregoryjm associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT boehnkemichael associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT abecasisgoncalor associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT vriezescotti associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT jiangbibo associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT zhanxiaowei associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata
AT liudajiangj associationanalysisandmetaanalysisofmultiallelicvariantsforlargescalesequencedata