Cargando…

Modified Biopolymer Adsorbents for Column Treatment of Sulfate Species in Saline Aquifers

In the present study, variable forms of pelletized chitosan adsorbents were prepared and their sulfate uptake properties in aqueous solution was studied in a fixed-bed column system. Unmodified chitosan pellets (CP), cross-linked chitosan pellets with glutaraldehyde (CL–CP), and calcium-doped forms...

Descripción completa

Detalles Bibliográficos
Autores principales: Solgi, Mostafa, G. Tabil, Lope, D. Wilson, Lee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288291/
https://www.ncbi.nlm.nih.gov/pubmed/32456240
http://dx.doi.org/10.3390/ma13102408
Descripción
Sumario:In the present study, variable forms of pelletized chitosan adsorbents were prepared and their sulfate uptake properties in aqueous solution was studied in a fixed-bed column system. Unmodified chitosan pellets (CP), cross-linked chitosan pellets with glutaraldehyde (CL–CP), and calcium-doped forms of these pellets (Ca–CP, Ca–CL–CP) were prepared, where the removal efficiencies and breakthrough curves were studied. Dynamic adsorption experiments were conducted at pH 4.5 and 6.5 with a specific flow rate of 3 mL/min, fixed-bed height of 200 mm, and an initial sulfate concentration of 1000 mg/L. Breakthrough parameters demonstrated that Ca–CP had the best sulfate removal among the adsorbents, where the following adsorption parameters were obtained: breakthrough time (75 min), exhaust time (300 min), maximum sulfate adsorption capacity (q(max); 46.6 mg/g), and sulfate removal (57%) at pH 4.5. Two well-known kinetic adsorption models, Thomas and Yoon-Nelson, were fitted to the experimental kinetic data to characterize the breakthrough curves. The fixed-bed column experimental results were well-fitted by both models and the maximum adsorption capacity (46.9 mg/g) obtained was for the Ca–CP adsorbent. A regeneration study over four adsorption-desorption cycles suggested that Ca–CP is a promising adsorbent for sulfate removal in a fixed-bed column system.