Cargando…
Progressive Failure Analysis of Laminates with Embedded Wrinkle Defects Based on an Elastoplastic Damage Model
Out-of-plane wrinkling has a significant influence on the mechanical performance of composite laminates. Numerical simulations were conducted to investigate the progressive failure behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to axial compression. To d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288345/ https://www.ncbi.nlm.nih.gov/pubmed/32466256 http://dx.doi.org/10.3390/ma13102422 |
Sumario: | Out-of-plane wrinkling has a significant influence on the mechanical performance of composite laminates. Numerical simulations were conducted to investigate the progressive failure behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to axial compression. To describe the material degradation, a three-dimensional elastoplastic damage model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting, and delamination) was developed based on the LaRC05 criterion. To improve the computational efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and robust modified algorithm that combines the golden section search method with an inverse interpolation based on an existing study is proposed. The elastoplastic damage model was implemented in the finite-element code Abaqus using a user-defined material subroutine in Abaqus/Explicit. The model was applied to the progressive failure analysis of IM7/8552 composite laminates with out-of-plane wrinkles subjected to axial compressive loading. The numerical results showed that the compressive strength prediction obtained by the elastoplastic damage model is more accurate than that derived with an elastic damage model. The present model can describe the nonlinearity of the laminate during the damage evolution and determine the correct damage locations, which are in good agreement with experimental observations. Furthermore, it was discovered that the plasticity effects should not be neglected in laminates with low wrinkle levels. |
---|