Cargando…
Computational biology: deep learning
Deep learning is the trendiest tool in a computational biologist's toolbox. This exciting class of methods, based on artificial neural networks, quickly became popular due to its competitive performance in prediction problems. In pioneering early work, applying simple network architectures to a...
Autores principales: | Jones, William, Alasoo, Kaur, Fishman, Dmytro, Parts, Leopold |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289034/ https://www.ncbi.nlm.nih.gov/pubmed/33525807 http://dx.doi.org/10.1042/ETLS20160025 |
Ejemplares similares
-
Deep learning for computational biology
por: Angermueller, Christof, et al.
Publicado: (2016) -
Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
por: Ali, Mohammed A. S., et al.
Publicado: (2021) -
Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
por: Pärnamaa, Tanel, et al.
Publicado: (2017) -
ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations
por: Ali, Mohammed A. S., et al.
Publicado: (2022) -
Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells
por: Usluer, Sunay, et al.
Publicado: (2023)