Cargando…
Estimating the Net Benefit of Improvements in Hospital Performance: G-Computation With Hierarchical Regression Models
It is important to be able to estimate the anticipated net population benefit if the performance of hospitals is improved to specific standards. OBJECTIVE: The objective of this study was to show how G-computation can be used with random effects logistic regression models to estimate the absolute re...
Autores principales: | Austin, Peter C., Lee, Douglas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289139/ https://www.ncbi.nlm.nih.gov/pubmed/32049879 http://dx.doi.org/10.1097/MLR.0000000000001312 |
Ejemplares similares
-
Bayes rules for optimally using Bayesian hierarchical regression models in provider profiling to identify high-mortality hospitals
por: Austin, Peter C
Publicado: (2008) -
The Impact of Outliers on Net-Benefit Regression Model in Cost-Effectiveness Analysis
por: Wen, Yu-Wen, et al.
Publicado: (2013) -
Hierarchical regression of ASA prediction model in predicting mortality prior to performing emergency laparotomy a systematic review
por: Akhtar, Muzina, et al.
Publicado: (2020) -
Hierarchical change-point regression models including random effects to estimate empirical critical loads for nitrogen using Bayesian Regression Models (brms) and JAGS
por: Roth, Tobias, et al.
Publicado: (2022) -
Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
por: Austin, Peter C, et al.
Publicado: (2014)