Cargando…
Radiomics Prediction of EGFR Status in Lung Cancer—Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
We investigated the performance of multiple radiomics feature extractors/software on predicting epidermal growth factor receptor mutation status in 228 patients with non–small cell lung cancer from publicly available data sets in The Cancer Imaging Archive. The imaging and clinical data were split i...
Autores principales: | Lu, Lin, Sun, Shawn H., Yang, Hao, E, Linning, Guo, Pingzhen, Schwartz, Lawrence H., Zhao, Binsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289249/ https://www.ncbi.nlm.nih.gov/pubmed/32548300 http://dx.doi.org/10.18383/j.tom.2020.00017 |
Ejemplares similares
-
Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings
por: Lu, Lin, et al.
Publicado: (2016) -
Identifying Robust Radiomics Features for Lung Cancer by Using In-Vivo and Phantom Lung Lesions
por: Lu, Lin, et al.
Publicado: (2021) -
Toward radiomics for assessment of response to systemic therapies in lung cancer
por: Sun, Shawn, et al.
Publicado: (2020) -
Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom
por: Lu, Lin, et al.
Publicado: (2019) -
CT Slice Thickness and Convolution Kernel Affect Performance of a Radiomic Model for Predicting EGFR Status in Non-Small Cell Lung Cancer: A Preliminary Study
por: Li, Yajun, et al.
Publicado: (2018)