Cargando…
Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN's
Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neural networks (CNNs) have become widely used in medical image analysis. We study the...
Autores principales: | Cherezov, Dmitry, Paul, Rahul, Fetisov, Nikolai, Gillies, Robert J., Schabath, Matthew B., Goldgof, Dmitry B., Hall, Lawrence O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289250/ https://www.ncbi.nlm.nih.gov/pubmed/32548298 http://dx.doi.org/10.18383/j.tom.2019.00024 |
Ejemplares similares
-
Revealing Tumor Habitats from Texture Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness
por: Cherezov, Dmitry, et al.
Publicado: (2019) -
A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC
por: Moreno, Silvia, et al.
Publicado: (2021) -
Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial
por: Cherezov, Dmitry, et al.
Publicado: (2018) -
Deep Feature Stability Analysis Using CT Images of a Physical Phantom Across Scanner Manufacturers, Cartridges, Pixel Sizes, and Slice Thickness
por: Paul, Rahul, et al.
Publicado: (2020) -
Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features
por: Paul, Rahul, et al.
Publicado: (2019)