Cargando…
Intraobserver Variability in Bladder Cancer Treatment Response Assessment With and Without Computerized Decision Support
We evaluated the intraobserver variability of physicians aided by a computerized decision-support system for treatment response assessment (CDSS-T) to identify patients who show complete response to neoadjuvant chemotherapy for bladder cancer, and the effects of the intraobserver variability on phys...
Autores principales: | Hadjiiski, Lubomir M., Cha, Kenny H., Cohan, Richard H., Chan, Heang-Ping, Caoili, Elaine M., Davenport, Matthew S., Samala, Ravi K., Weizer, Alon Z., Alva, Ajjai, Kirova-Nedyalkova, Galina, Shampain, Kimberly, Meyer, Nathaniel, Barkmeier, Daniel, Woolen, Sean A, Shankar, Prasad R., Francis, Isaac R., Palmbos, Phillip L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289252/ https://www.ncbi.nlm.nih.gov/pubmed/32548296 http://dx.doi.org/10.18383/j.tom.2020.00013 |
Ejemplares similares
-
Computerized Decision Support for Bladder Cancer Treatment Response Assessment in CT Urography: Effect on Diagnostic Accuracy in Multi-Institution Multi-Specialty Study
por: Sun, Di, et al.
Publicado: (2022) -
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning
por: Cha, Kenny H., et al.
Publicado: (2017) -
Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network—A Pilot Study
por: Cha, Kenny H., et al.
Publicado: (2016) -
Deep Learning Approach for Assessment of Bladder Cancer Treatment Response
por: Wu, Eric, et al.
Publicado: (2019) -
Survival Prediction of Patients with Bladder Cancer after Cystectomy Based on Clinical, Radiomics, and Deep-Learning Descriptors
por: Sun, Di, et al.
Publicado: (2023)