Cargando…
A Fully Automated Deep Learning Network for Brain Tumor Segmentation
We developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into indiv...
Autores principales: | Bangalore Yogananda, Chandan Ganesh, Shah, Bhavya R., Vejdani-Jahromi, Maryam, Nalawade, Sahil S., Murugesan, Gowtham K., Yu, Frank F., Pinho, Marco C., Wagner, Benjamin C., Emblem, Kyrre E., Bjørnerud, Atle, Fei, Baowei, Madhuranthakam, Ananth J., Maldjian, Joseph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289260/ https://www.ncbi.nlm.nih.gov/pubmed/32548295 http://dx.doi.org/10.18383/j.tom.2019.00026 |
Ejemplares similares
-
A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas
por: Yogananda, Chandan Ganesh Bangalore, et al.
Publicado: (2021) -
Corrigendum to: A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas
por: Yogananda, Chandan Ganesh Bangalore, et al.
Publicado: (2023) -
Errata: Brain tumor IDH, 1p/19q, and MGMT molecular classification using
MRI-based deep learning: an initial study on the effect of motion and motion
correction
por: Nalawade, Sahil S., et al.
Publicado: (2023) -
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
por: Bangalore Yogananda, Chandan Ganesh, et al.
Publicado: (2023) -
The Impact of MRI Features and Observer Confidence on the Treatment Decision-Making for Patients with Untreated Glioma
por: Due-Tønnessen, Paulina, et al.
Publicado: (2019)