Cargando…

Motion sickness symptoms during jumping exercise on a short-arm centrifuge

Artificial gravity elicited through short-arm human centrifugation combined with physical exercise, such as jumping, is promising in maintaining health and performance during space travel. However, motion sickness symptoms could limit the tolerability of the approach. Therefore, we determined the fe...

Descripción completa

Detalles Bibliográficos
Autores principales: Frett, Timo, Green, David Andrew, Arz, Michael, Noppe, Alexandra, Petrat, Guido, Kramer, Andreas, Kuemmel, Jakob, Tegtbur, Uwe, Jordan, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289365/
https://www.ncbi.nlm.nih.gov/pubmed/32525946
http://dx.doi.org/10.1371/journal.pone.0234361
Descripción
Sumario:Artificial gravity elicited through short-arm human centrifugation combined with physical exercise, such as jumping, is promising in maintaining health and performance during space travel. However, motion sickness symptoms could limit the tolerability of the approach. Therefore, we determined the feasibility and tolerability, particularly occurrence of motion sickness symptoms, during reactive jumping exercises on a short-arm centrifuge. In 15 healthy men, we assessed motion sickness induced by jumping exercises during short-arm centrifugation at constant +1Gz or randomized variable +0.5, +0.75, +1, +1.25 and +1.5 Gz along the body axis referenced to center of mass. Jumping in the upright position served as control intervention. Test sessions were conducted on separate days in a randomized and cross-over fashion. All participants tolerated jumping exercises against terrestrial gravity and on the short-arm centrifuge during 1 Gz or variable Gz at the center of mass without disabling motion sickness symptoms. While head movements markedly differed, motion sickness scores were only modestly increased with jumping on the short-arm centrifuge compared with vertical jumps. Our study demonstrates that repetitive jumping exercises are feasible and tolerable during short-arm centrifugation. Since jumping exercises maintain muscle and bone mass, our study enables further development of exercise countermeasures in artificial gravity.