Cargando…
Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data
PURPOSE: To develop an automated framework for sleep stage scoring from PSG via a deep neural network. METHODS: An automated deep neural network was proposed by using a multi-model integration strategy with multiple signal channels as input. All of the data were collected from one single medical cen...
Autores principales: | Zhang, Xiaoqing, Xu, Mingkai, Li, Yanru, Su, Minmin, Xu, Ziyao, Wang, Chunyan, Kang, Dan, Li, Hongguang, Mu, Xin, Ding, Xiu, Xu, Wen, Wang, Xingjun, Han, Demin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289784/ https://www.ncbi.nlm.nih.gov/pubmed/31938990 http://dx.doi.org/10.1007/s11325-019-02008-w |
Ejemplares similares
-
Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography
por: Huttunen, Riku, et al.
Publicado: (2021) -
Swallowing and aspiration during sleep in patients with obstructive sleep apnea versus control individuals
por: Kohno, Akane, et al.
Publicado: (2022) -
Overnight declarative memory consolidation and non-rapid eye movement sleep electroencephalographic oscillations in older adults with obstructive sleep apnea
por: Teh, Jun Z, et al.
Publicado: (2023) -
Improvements in cognitive function and quantitative sleep electroencephalogram in obstructive sleep apnea after six months of continuous positive airway pressure treatment
por: D’Rozario, Angela L, et al.
Publicado: (2022) -
How does obstructive sleep apnea alter cerebral hemodynamics?
por: Gregori-Pla, Clara, et al.
Publicado: (2023)