Cargando…
Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks
Comorbidities such as anemia or hypertension and physiological factors related to exertion can influence a patient’s hemodynamics and increase the severity of many cardiovascular diseases. Observing and quantifying associations between these factors and hemodynamics can be difficult due to the multi...
Autores principales: | Feiger, Bradley, Gounley, John, Adler, Dale, Leopold, Jane A., Draeger, Erik W., Chaudhury, Rafeed, Ryan, Justin, Pathangey, Girish, Winarta, Kevin, Frakes, David, Michor, Franziska, Randles, Amanda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289812/ https://www.ncbi.nlm.nih.gov/pubmed/32528104 http://dx.doi.org/10.1038/s41598-020-66225-0 |
Ejemplares similares
-
The importance of side branches in modeling 3D hemodynamics from angiograms for patients with coronary artery disease
por: Vardhan, Madhurima, et al.
Publicado: (2019) -
Coarctation of the aorta
por: Rodríguez-Iturbe, Bernardo, et al.
Publicado: (2012) -
Coarctation of the aorta
por: Prêtre, R
Publicado: (2012) -
Coarctation of the Aorta
por: Raman, T. K.
Publicado: (1939) -
Coarctation of the Aorta
por: Miyagawa, Masatsugu, et al.
Publicado: (2023)