Cargando…

Persistence of plastic debris and its colonization by bacterial communities after two decades on the abyssal seafloor

The fate of plastic debris entering the oceans is largely unconstrained. Currently, intensified research is devoted to the abiotic and microbial degradation of plastic floating near the ocean surface for an extended period of time. In contrast, the impacts of environmental conditions in the deep sea...

Descripción completa

Detalles Bibliográficos
Autores principales: Krause, S., Molari, M., Gorb, E. V., Gorb, S. N., Kossel, E., Haeckel, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289819/
https://www.ncbi.nlm.nih.gov/pubmed/32528001
http://dx.doi.org/10.1038/s41598-020-66361-7
Descripción
Sumario:The fate of plastic debris entering the oceans is largely unconstrained. Currently, intensified research is devoted to the abiotic and microbial degradation of plastic floating near the ocean surface for an extended period of time. In contrast, the impacts of environmental conditions in the deep sea on polymer properties and rigidity are virtually unknown. Here, we present unique results of plastic items identified to have been introduced into deep-sea sediments at a water depth of 4150 m in the eastern equatorial Pacific Ocean more than two decades ago. The results, including optical, spectroscopic, physical and microbial analyses, clearly demonstrate that the bulk polymer materials show no apparent sign of physical or chemical degradation. Solely the polymer surface layers showed reduced hydrophobicity, presumably caused by microbial colonization. The bacterial community present on the plastic items differed significantly (p < 0.1%) from those of the adjacent natural environment by a dominant presence of groups requiring steep redox gradients (Mesorhizobium, Sulfurimonas) and a remarkable decrease in diversity. The establishment of chemical gradients across the polymer surfaces presumably caused these conditions. Our findings suggest that plastic is stable over extended times under deep-sea conditions and that prolonged deposition of polymer items at the seafloor may induce local oxygen depletion at the sediment-water interface.