Cargando…
NeuroMem: Analog Graphene-Based Resistive Memory for Artificial Neural Networks
Artificial Intelligence (AI) at the edge has become a hot subject of the recent technology-minded publications. The challenges related to IoT nodes gave rise to research on efficient hardware-based accelerators. In this context, analog memristor devices are crucial elements to efficiently perform th...
Autores principales: | Abunahla, Heba, Halawani, Yasmin, Alazzam, Anas, Mohammad, Baker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289867/ https://www.ncbi.nlm.nih.gov/pubmed/32528102 http://dx.doi.org/10.1038/s41598-020-66413-y |
Ejemplares similares
-
NeuroMEMS: Neural Probe Microtechnologies
por: HajjHassan, Mohamad, et al.
Publicado: (2008) -
Artificial Intelligence-Aided Low Cost and Flexible Graphene Oxide-Based Paper Sensor for Ultraviolet and Sunlight Monitoring
por: Abusultan, Ahmed, et al.
Publicado: (2022) -
Micro-Pattern of Graphene Oxide Films Using Metal Bonding
por: Abunahla, Heba, et al.
Publicado: (2020) -
Analog monolayer SWCNTs-based memristive 2D structure for energy-efficient deep learning in spiking neural networks
por: Abunahla, Heba, et al.
Publicado: (2023) -
Integrated graphene oxide resistive element in tunable RF filters
por: Abunahla, Heba, et al.
Publicado: (2020)