Cargando…

Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer

Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires classical computational resources polynomial in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Grzesiak, Nikodem, Blümel, Reinhold, Wright, Kenneth, Beck, Kristin M., Pisenti, Neal C., Li, Ming, Chaplin, Vandiver, Amini, Jason M., Debnath, Shantanu, Chen, Jwo-Sy, Nam, Yunseong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289877/
https://www.ncbi.nlm.nih.gov/pubmed/32528164
http://dx.doi.org/10.1038/s41467-020-16790-9
_version_ 1783545550940930048
author Grzesiak, Nikodem
Blümel, Reinhold
Wright, Kenneth
Beck, Kristin M.
Pisenti, Neal C.
Li, Ming
Chaplin, Vandiver
Amini, Jason M.
Debnath, Shantanu
Chen, Jwo-Sy
Nam, Yunseong
author_facet Grzesiak, Nikodem
Blümel, Reinhold
Wright, Kenneth
Beck, Kristin M.
Pisenti, Neal C.
Li, Ming
Chaplin, Vandiver
Amini, Jason M.
Debnath, Shantanu
Chen, Jwo-Sy
Nam, Yunseong
author_sort Grzesiak, Nikodem
collection PubMed
description Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires classical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case. We demonstrate an exponential improvement in both classical and quantum resources over the current state of the art. We implement the protocol on a software-defined trapped-ion quantum computer, where we reconfigure the quantum computer architecture on demand. Our protocol may also be extended to a wide variety of other quantum computing platforms.
format Online
Article
Text
id pubmed-7289877
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72898772020-06-16 Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer Grzesiak, Nikodem Blümel, Reinhold Wright, Kenneth Beck, Kristin M. Pisenti, Neal C. Li, Ming Chaplin, Vandiver Amini, Jason M. Debnath, Shantanu Chen, Jwo-Sy Nam, Yunseong Nat Commun Article Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires classical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case. We demonstrate an exponential improvement in both classical and quantum resources over the current state of the art. We implement the protocol on a software-defined trapped-ion quantum computer, where we reconfigure the quantum computer architecture on demand. Our protocol may also be extended to a wide variety of other quantum computing platforms. Nature Publishing Group UK 2020-06-11 /pmc/articles/PMC7289877/ /pubmed/32528164 http://dx.doi.org/10.1038/s41467-020-16790-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Grzesiak, Nikodem
Blümel, Reinhold
Wright, Kenneth
Beck, Kristin M.
Pisenti, Neal C.
Li, Ming
Chaplin, Vandiver
Amini, Jason M.
Debnath, Shantanu
Chen, Jwo-Sy
Nam, Yunseong
Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title_full Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title_fullStr Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title_full_unstemmed Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title_short Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
title_sort efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289877/
https://www.ncbi.nlm.nih.gov/pubmed/32528164
http://dx.doi.org/10.1038/s41467-020-16790-9
work_keys_str_mv AT grzesiaknikodem efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT blumelreinhold efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT wrightkenneth efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT beckkristinm efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT pisentinealc efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT liming efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT chaplinvandiver efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT aminijasonm efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT debnathshantanu efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT chenjwosy efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer
AT namyunseong efficientarbitrarysimultaneouslyentanglinggatesonatrappedionquantumcomputer