Cargando…

A cognitive analysis of deceptive pollination: associative mechanisms underlying pollinators’ choices in non-rewarding colour polymorphic scenarios

Intraspecific floral colour polymorphism is a common trait of food deceptive orchids, which lure pollinators with variable, attractive signals, without providing food resources. The variable signals are thought to hinder avoidance learning of deceptive flowers by pollinators. Here, we analysed the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguiar, João Marcelo Robazzi Bignelli Valente, Giurfa, Martin, Sazima, Marlies
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290031/
https://www.ncbi.nlm.nih.gov/pubmed/32528048
http://dx.doi.org/10.1038/s41598-020-66356-4
Descripción
Sumario:Intraspecific floral colour polymorphism is a common trait of food deceptive orchids, which lure pollinators with variable, attractive signals, without providing food resources. The variable signals are thought to hinder avoidance learning of deceptive flowers by pollinators. Here, we analysed the cognitive mechanisms underlying the choice of free-flying stingless bees Scaptotrigona aff. depilis trained to visit a patch of artificial flowers that displayed the colours of Ionopsis utricularioides, a food deceptive orchid. Bees were trained in the presence of a non-rewarding colour and later tested with that colour vs. alternative colours. We simulated a discrete-polymorphism scenario with two distinct non-rewarding test colours, and a continuous-polymorphism scenario with three non-rewarding test colours aligned along a chromatic continuum. Bees learned to avoid the non-rewarding colour experienced during training. They thus preferred the novel non-rewarding colour in the discrete-polymorphic situation, and generalized their avoidance to the adjacent colour of the continuum in the continuous-polymorphism situation, favouring thereby the most distant colour. Bees also visited less flowers and abandoned faster a non-rewarding monomorphic patch than a non-rewarding polymorphic patch. Our cognitive analyses thus reveal that variable deceptive orchids disrupt avoidance learning by pollinators and exploit their generalization abilities, which make them favour distinct morphs.