Cargando…
Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study
(1) Background: Cardiac amyloidosis (CA) is a rare and complex condition with poor prognosis. While novel therapies improve outcomes, many affected individuals remain undiagnosed due to a lack of awareness among clinicians. This study was undertaken to develop an expert-independent machine learning...
Autores principales: | Agibetov, Asan, Seirer, Benjamin, Dachs, Theresa-Marie, Koschutnik, Matthias, Dalos, Daniel, Rettl, René, Duca, Franz, Schrutka, Lore, Agis, Hermine, Kain, Renate, Auer-Grumbach, Michela, Binder, Christina, Mascherbauer, Julia, Hengstenberg, Christian, Samwald, Matthias, Dorffner, Georg, Bonderman, Diana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290438/ https://www.ncbi.nlm.nih.gov/pubmed/32375287 http://dx.doi.org/10.3390/jcm9051334 |
Ejemplares similares
-
Convolutional Neural Networks for Fully Automated Diagnosis of Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging
por: Agibetov, Asan, et al.
Publicado: (2021) -
Machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
por: Schrutka, Lore, et al.
Publicado: (2022) -
Patients with Heart Failure and Preserved Ejection Fraction Are at Risk of Gastrointestinal Bleeding
por: Schrutka, Lore, et al.
Publicado: (2019) -
Hemodynamic Profiles and Their Prognostic Relevance in Cardiac Amyloidosis
por: Duca, Franz, et al.
Publicado: (2020) -
Prognostic implications of pericardial and pleural effusion in patients with cardiac amyloidosis
por: Binder, Christina, et al.
Publicado: (2020)