Cargando…
Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox
Snakebite envenomation causes over 140,000 deaths every year, predominantly in developing countries. As a result, it is one of the most lethal neglected tropical diseases. It is associated with incredibly complex pathophysiology due to the vast number of unique toxins/proteins present in the venoms...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290494/ https://www.ncbi.nlm.nih.gov/pubmed/32397419 http://dx.doi.org/10.3390/toxins12050309 |
_version_ | 1783545689601474560 |
---|---|
author | Layfield, Harry J. Williams, Harry F. Ravishankar, Divyashree Mehmi, Amita Sonavane, Medha Salim, Anika Vaiyapuri, Rajendran Lakshminarayanan, Karthik Vallance, Thomas M. Bicknell, Andrew B. Trim, Steven A. Patel, Ketan Vaiyapuri, Sakthivel |
author_facet | Layfield, Harry J. Williams, Harry F. Ravishankar, Divyashree Mehmi, Amita Sonavane, Medha Salim, Anika Vaiyapuri, Rajendran Lakshminarayanan, Karthik Vallance, Thomas M. Bicknell, Andrew B. Trim, Steven A. Patel, Ketan Vaiyapuri, Sakthivel |
author_sort | Layfield, Harry J. |
collection | PubMed |
description | Snakebite envenomation causes over 140,000 deaths every year, predominantly in developing countries. As a result, it is one of the most lethal neglected tropical diseases. It is associated with incredibly complex pathophysiology due to the vast number of unique toxins/proteins present in the venoms of diverse snake species found worldwide. Here, we report the purification and functional characteristics of a Group I (PI) metalloprotease (CAMP-2) from the venom of the western diamondback rattlesnake, Crotalus atrox. Its sensitivity to matrix metalloprotease inhibitors (batimastat and marimastat) was established using specific in vitro experiments and in silico molecular docking analysis. CAMP-2 shows high sequence homology to atroxase from the venom of Crotalus atrox and exhibits collagenolytic, fibrinogenolytic and mild haemolytic activities. It exerts a mild inhibitory effect on agonist-induced platelet aggregation in the absence of plasma proteins. Its collagenolytic activity is completely inhibited by batimastat and marimastat. Zinc chloride also inhibits the collagenolytic activity of CAMP-2 by around 75% at 50 μM, while it is partially potentiated by calcium chloride. Molecular docking studies have demonstrated that batimastat and marimastat are able to bind strongly to the active site residues of CAMP-2. This study demonstrates the impact of matrix metalloprotease inhibitors in the modulation of a purified, Group I metalloprotease activities in comparison to the whole venom. By improving our understanding of snake venom metalloproteases and their sensitivity to small molecule inhibitors, we can begin to develop novel and improved treatment strategies for snakebites. |
format | Online Article Text |
id | pubmed-7290494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72904942020-06-17 Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox Layfield, Harry J. Williams, Harry F. Ravishankar, Divyashree Mehmi, Amita Sonavane, Medha Salim, Anika Vaiyapuri, Rajendran Lakshminarayanan, Karthik Vallance, Thomas M. Bicknell, Andrew B. Trim, Steven A. Patel, Ketan Vaiyapuri, Sakthivel Toxins (Basel) Article Snakebite envenomation causes over 140,000 deaths every year, predominantly in developing countries. As a result, it is one of the most lethal neglected tropical diseases. It is associated with incredibly complex pathophysiology due to the vast number of unique toxins/proteins present in the venoms of diverse snake species found worldwide. Here, we report the purification and functional characteristics of a Group I (PI) metalloprotease (CAMP-2) from the venom of the western diamondback rattlesnake, Crotalus atrox. Its sensitivity to matrix metalloprotease inhibitors (batimastat and marimastat) was established using specific in vitro experiments and in silico molecular docking analysis. CAMP-2 shows high sequence homology to atroxase from the venom of Crotalus atrox and exhibits collagenolytic, fibrinogenolytic and mild haemolytic activities. It exerts a mild inhibitory effect on agonist-induced platelet aggregation in the absence of plasma proteins. Its collagenolytic activity is completely inhibited by batimastat and marimastat. Zinc chloride also inhibits the collagenolytic activity of CAMP-2 by around 75% at 50 μM, while it is partially potentiated by calcium chloride. Molecular docking studies have demonstrated that batimastat and marimastat are able to bind strongly to the active site residues of CAMP-2. This study demonstrates the impact of matrix metalloprotease inhibitors in the modulation of a purified, Group I metalloprotease activities in comparison to the whole venom. By improving our understanding of snake venom metalloproteases and their sensitivity to small molecule inhibitors, we can begin to develop novel and improved treatment strategies for snakebites. MDPI 2020-05-09 /pmc/articles/PMC7290494/ /pubmed/32397419 http://dx.doi.org/10.3390/toxins12050309 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Layfield, Harry J. Williams, Harry F. Ravishankar, Divyashree Mehmi, Amita Sonavane, Medha Salim, Anika Vaiyapuri, Rajendran Lakshminarayanan, Karthik Vallance, Thomas M. Bicknell, Andrew B. Trim, Steven A. Patel, Ketan Vaiyapuri, Sakthivel Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title | Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title_full | Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title_fullStr | Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title_full_unstemmed | Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title_short | Repurposing Cancer Drugs Batimastat and Marimastat to Inhibit the Activity of a Group I Metalloprotease from the Venom of the Western Diamondback Rattlesnake, Crotalus atrox |
title_sort | repurposing cancer drugs batimastat and marimastat to inhibit the activity of a group i metalloprotease from the venom of the western diamondback rattlesnake, crotalus atrox |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290494/ https://www.ncbi.nlm.nih.gov/pubmed/32397419 http://dx.doi.org/10.3390/toxins12050309 |
work_keys_str_mv | AT layfieldharryj repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT williamsharryf repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT ravishankardivyashree repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT mehmiamita repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT sonavanemedha repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT salimanika repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT vaiyapurirajendran repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT lakshminarayanankarthik repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT vallancethomasm repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT bicknellandrewb repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT trimstevena repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT patelketan repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox AT vaiyapurisakthivel repurposingcancerdrugsbatimastatandmarimastattoinhibittheactivityofagroupimetalloproteasefromthevenomofthewesterndiamondbackrattlesnakecrotalusatrox |