Cargando…
Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy
In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), al...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290522/ https://www.ncbi.nlm.nih.gov/pubmed/32397538 http://dx.doi.org/10.3390/cells9051184 |
_version_ | 1783545696389955584 |
---|---|
author | Kohler, Verena Aufschnaiter, Andreas Büttner, Sabrina |
author_facet | Kohler, Verena Aufschnaiter, Andreas Büttner, Sabrina |
author_sort | Kohler, Verena |
collection | PubMed |
description | In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear–vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome. |
format | Online Article Text |
id | pubmed-7290522 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72905222020-06-17 Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy Kohler, Verena Aufschnaiter, Andreas Büttner, Sabrina Cells Review In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear–vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome. MDPI 2020-05-09 /pmc/articles/PMC7290522/ /pubmed/32397538 http://dx.doi.org/10.3390/cells9051184 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kohler, Verena Aufschnaiter, Andreas Büttner, Sabrina Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title | Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title_full | Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title_fullStr | Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title_full_unstemmed | Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title_short | Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy |
title_sort | closing the gap: membrane contact sites in the regulation of autophagy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290522/ https://www.ncbi.nlm.nih.gov/pubmed/32397538 http://dx.doi.org/10.3390/cells9051184 |
work_keys_str_mv | AT kohlerverena closingthegapmembranecontactsitesintheregulationofautophagy AT aufschnaiterandreas closingthegapmembranecontactsitesintheregulationofautophagy AT buttnersabrina closingthegapmembranecontactsitesintheregulationofautophagy |