Cargando…
Drug Resistance Prediction Using Deep Learning Techniques on HIV-1 Sequence Data
The fast replication rate and lack of repair mechanisms of human immunodeficiency virus (HIV) contribute to its high mutation frequency, with some mutations resulting in the evolution of resistance to antiretroviral therapies (ART). As such, studying HIV drug resistance allows for real-time evaluati...
Autores principales: | Steiner, Margaret C., Gibson, Keylie M., Crandall, Keith A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290575/ https://www.ncbi.nlm.nih.gov/pubmed/32438586 http://dx.doi.org/10.3390/v12050560 |
Ejemplares similares
-
A 28-Year History of HIV-1 Drug Resistance and Transmission in Washington, DC
por: Gibson, Keylie M., et al.
Publicado: (2019) -
Corrigendum: A 28-Year History of HIV-1 Drug Resistance and Transmission in Washington, DC
por: Gibson, Keylie M., et al.
Publicado: (2019) -
HAPHPIPE: Haplotype Reconstruction and Phylodynamics for Deep Sequencing of Intrahost Viral Populations
por: Bendall, Matthew L, et al.
Publicado: (2020) -
Validation of Variant Assembly Using HAPHPIPE with Next-Generation Sequence Data from Viruses
por: Gibson, Keylie M., et al.
Publicado: (2020) -
A cross-sectional study to characterize local HIV-1 dynamics in Washington, DC using next-generation sequencing
por: Gibson, Keylie M., et al.
Publicado: (2020)