Cargando…

Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2,...

Descripción completa

Detalles Bibliográficos
Autores principales: Dilucca, Maddalena, Forcelloni, Sergio, Georgakilas, Alexandros G., Giansanti, Andrea, Pavlopoulou, Athanasia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290700/
https://www.ncbi.nlm.nih.gov/pubmed/32366025
http://dx.doi.org/10.3390/v12050498
_version_ 1783545738457776128
author Dilucca, Maddalena
Forcelloni, Sergio
Georgakilas, Alexandros G.
Giansanti, Andrea
Pavlopoulou, Athanasia
author_facet Dilucca, Maddalena
Forcelloni, Sergio
Georgakilas, Alexandros G.
Giansanti, Andrea
Pavlopoulou, Athanasia
author_sort Dilucca, Maddalena
collection PubMed
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2.
format Online
Article
Text
id pubmed-7290700
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72907002020-06-17 Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes Dilucca, Maddalena Forcelloni, Sergio Georgakilas, Alexandros G. Giansanti, Andrea Pavlopoulou, Athanasia Viruses Article Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2. MDPI 2020-04-30 /pmc/articles/PMC7290700/ /pubmed/32366025 http://dx.doi.org/10.3390/v12050498 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dilucca, Maddalena
Forcelloni, Sergio
Georgakilas, Alexandros G.
Giansanti, Andrea
Pavlopoulou, Athanasia
Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title_full Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title_fullStr Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title_full_unstemmed Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title_short Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes
title_sort codon usage and phenotypic divergences of sars-cov-2 genes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290700/
https://www.ncbi.nlm.nih.gov/pubmed/32366025
http://dx.doi.org/10.3390/v12050498
work_keys_str_mv AT diluccamaddalena codonusageandphenotypicdivergencesofsarscov2genes
AT forcellonisergio codonusageandphenotypicdivergencesofsarscov2genes
AT georgakilasalexandrosg codonusageandphenotypicdivergencesofsarscov2genes
AT giansantiandrea codonusageandphenotypicdivergencesofsarscov2genes
AT pavlopoulouathanasia codonusageandphenotypicdivergencesofsarscov2genes