Cargando…

The Phylogeography of MERS-CoV in Hospital Outbreak-Associated Cases Compared to Sporadic Cases in Saudi Arabia

This study compared the phylogeography of MERS-CoV between hospital outbreak-associated cases and sporadic cases in Saudi Arabia. We collected complete genome sequences from human samples in Saudi Arabia and data on the multiple risk factors of human MERS-CoV in Saudi Arabia reported from 2012 to 20...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xin, Adam, Dillon Charles, Chughtai, Abrar Ahmad, Stelzer-Braid, Sacha, Scotch, Matthew, MacIntyre, Chandini Raina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290704/
https://www.ncbi.nlm.nih.gov/pubmed/32422937
http://dx.doi.org/10.3390/v12050540
Descripción
Sumario:This study compared the phylogeography of MERS-CoV between hospital outbreak-associated cases and sporadic cases in Saudi Arabia. We collected complete genome sequences from human samples in Saudi Arabia and data on the multiple risk factors of human MERS-CoV in Saudi Arabia reported from 2012 to 2018. By matching each sequence to human cases, we identified isolates as hospital outbreak-associated cases or sporadic cases. We used Bayesian phylogenetic methods including temporal, discrete trait analysis and phylogeography to uncover transmission routes of MERS-CoV isolates between hospital outbreaks and sporadic cases. Of the 120 sequences collected between 19 June 2012 and 23 January 2017, there were 64 isolates from hospital outbreak-associated cases and 56 from sporadic cases. Overall, MERS-CoV is fast evolving at 7.43 × 10(−4) substitutions per site per year. Isolates from hospital outbreaks showed unusually fast evolutionary speed in a shorter time-frame than sporadic cases. Multiple introductions of different MERS-CoV strains occurred in three separate hospital outbreaks. MERS-CoV appears to be mutating in humans. The impact of mutations on viruses transmissibility in humans is unknown.