Cargando…

Three-Dimensional Analysis of Isolated Orbital Floor Fractures Pre- and Post-Reconstruction with Standard Titanium Meshes and “Hybrid” Patient-Specific Implants

The aim of this study was to compare the efficacy of the intraoperative bending of titanium mesh with the efficacy of pre-contoured “hybrid” patient-specific titanium mesh for the surgical repair of isolated orbital floor fractures. In-house 3D-printed anatomical models were used as bending guides....

Descripción completa

Detalles Bibliográficos
Autores principales: Sigron, Guido R., Rüedi, Nathalie, Chammartin, Frédérique, Meyer, Simon, Msallem, Bilal, Kunz, Christoph, Thieringer, Florian M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291031/
https://www.ncbi.nlm.nih.gov/pubmed/32455967
http://dx.doi.org/10.3390/jcm9051579
Descripción
Sumario:The aim of this study was to compare the efficacy of the intraoperative bending of titanium mesh with the efficacy of pre-contoured “hybrid” patient-specific titanium mesh for the surgical repair of isolated orbital floor fractures. In-house 3D-printed anatomical models were used as bending guides. The main outcome measures were preoperative and postoperative orbital volume and surgery time. We performed a retrospective cohort study including 22 patients who had undergone surgery between May 2016 and November 2018. The first twelve patients underwent conventional reconstruction with intraoperative free-hand bending of an orbital floor mesh plate. The subsequent ten patients received pre-contoured plates based on 3D-printed orbital models that were produced by mirroring the non-fractured orbit of the patient using a medical imaging software. We compared the preoperative and postoperative absolute volume difference (unfractured orbit, fractured orbit), the fracture area, the fracture collapse, and the effective surgery time between the two groups. In comparison to the intraoperative bending of titanium mesh, the application of preformed plates based on a 3D-printed orbital model resulted in a non-significant absolute volume difference in the intervention group (p = 0.276) and statistically significant volume difference in the conventional group (p = 0.002). Further, there was a significant reduction of the surgery time (57.3 ± 23.4 min versus 99.8 ± 28.9 min, p = 0.001). The results of this study suggest that the use of 3D-printed orbital models leads to a more accurate reconstruction and a time reduction during surgery.