Cargando…

Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production

The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso),...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Jing, Wang, Rui, Ren, Yonglin, McKirdy, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291056/
https://www.ncbi.nlm.nih.gov/pubmed/32408479
http://dx.doi.org/10.3390/insects11050298
_version_ 1783545821034184704
author Wan, Jing
Wang, Rui
Ren, Yonglin
McKirdy, Simon
author_facet Wan, Jing
Wang, Rui
Ren, Yonglin
McKirdy, Simon
author_sort Wan, Jing
collection PubMed
description The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which global potato cultivation is at risk. In addition, at a finer scale the risk to the Australian potato acreage was evaluated. A total of 86 MaxEnt models were built using various combinations of settings and climatic predictors, and the best model based on model evaluation metrics was selected. Climatically suitable habitats were identified in Eurasia, Africa, South America, and Australasia. Intersecting the predicted suitability map with land use data showed that 79.06% of the global potato cultivation acreage, 96.14% of the potato production acreage in South America and Eurasia, and all the Australian potato cropping areas are at risk. The information generated by this study increases knowledge of the ecology of TPP/CLso and can be used by government agencies to make decisions about preventing the spread of TPP and CLso across the globe.
format Online
Article
Text
id pubmed-7291056
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72910562020-06-17 Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production Wan, Jing Wang, Rui Ren, Yonglin McKirdy, Simon Insects Article The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which global potato cultivation is at risk. In addition, at a finer scale the risk to the Australian potato acreage was evaluated. A total of 86 MaxEnt models were built using various combinations of settings and climatic predictors, and the best model based on model evaluation metrics was selected. Climatically suitable habitats were identified in Eurasia, Africa, South America, and Australasia. Intersecting the predicted suitability map with land use data showed that 79.06% of the global potato cultivation acreage, 96.14% of the potato production acreage in South America and Eurasia, and all the Australian potato cropping areas are at risk. The information generated by this study increases knowledge of the ecology of TPP/CLso and can be used by government agencies to make decisions about preventing the spread of TPP and CLso across the globe. MDPI 2020-05-12 /pmc/articles/PMC7291056/ /pubmed/32408479 http://dx.doi.org/10.3390/insects11050298 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wan, Jing
Wang, Rui
Ren, Yonglin
McKirdy, Simon
Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title_full Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title_fullStr Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title_full_unstemmed Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title_short Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production
title_sort potential distribution and the risks of bactericera cockerelli and its associated plant pathogen candidatus liberibacter solanacearum for global potato production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291056/
https://www.ncbi.nlm.nih.gov/pubmed/32408479
http://dx.doi.org/10.3390/insects11050298
work_keys_str_mv AT wanjing potentialdistributionandtherisksofbactericeracockerellianditsassociatedplantpathogencandidatusliberibactersolanacearumforglobalpotatoproduction
AT wangrui potentialdistributionandtherisksofbactericeracockerellianditsassociatedplantpathogencandidatusliberibactersolanacearumforglobalpotatoproduction
AT renyonglin potentialdistributionandtherisksofbactericeracockerellianditsassociatedplantpathogencandidatusliberibactersolanacearumforglobalpotatoproduction
AT mckirdysimon potentialdistributionandtherisksofbactericeracockerellianditsassociatedplantpathogencandidatusliberibactersolanacearumforglobalpotatoproduction