Cargando…
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
Single-cell RNA-seq (scRNA-seq) is quite prevalent in studying transcriptomes, but it suffers from excessive zeros, some of which are true, but others are false. False zeros, which can be seen as missing data, obstruct the downstream analysis of single-cell RNA-seq data. How to distinguish true zero...
Autores principales: | Chi, Weilai, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291078/ https://www.ncbi.nlm.nih.gov/pubmed/32403260 http://dx.doi.org/10.3390/genes11050532 |
Ejemplares similares
-
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Eraslan, Gökcen, et al.
Publicado: (2019) -
Rapid, Reference-Free human genotype imputation with denoising autoencoders
por: Dias, Raquel, et al.
Publicado: (2022)