Cargando…
Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning
Background: Classification of colorectal neoplasms during colonoscopic examination is important to avoid unnecessary endoscopic biopsy or resection. This study aimed to develop and validate deep learning models that automatically classify colorectal lesions histologically on white-light colonoscopy...
Autores principales: | Yang, Young Joo, Cho, Bum-Joo, Lee, Myung-Je, Kim, Ju Han, Lim, Hyun, Bang, Chang Seok, Jeong, Hae Min, Hong, Ji Taek, Baik, Gwang Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291169/ https://www.ncbi.nlm.nih.gov/pubmed/32456309 http://dx.doi.org/10.3390/jcm9051593 |
Ejemplares similares
-
Automated histological classification for digital pathology images of colonoscopy specimen via deep learning
por: Byeon, Sun-ju, et al.
Publicado: (2022) -
Classification of cervical neoplasms on colposcopic photography using deep learning
por: Cho, Bum-Joo, et al.
Publicado: (2020) -
No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification
por: Gong, Eun Jeong, et al.
Publicado: (2022) -
Clinical impact of non-alcoholic fatty liver disease on the occurrence of colorectal neoplasm: Propensity score matching analysis
por: Yang, Young Joo, et al.
Publicado: (2017) -
Prediction of Submucosal Invasion for Gastric Neoplasms in Endoscopic Images Using Deep-Learning
por: Cho, Bum-Joo, et al.
Publicado: (2020)