Cargando…
SICE: an improved missing data imputation technique
In data analytics, missing data is a factor that degrades performance. Incorrect imputation of missing values could lead to a wrong prediction. In this era of big data, when a massive volume of data is generated in every second, and utilization of these data is a major concern to the stakeholders, e...
Autores principales: | Khan, Shahidul Islam, Hoque, Abu Sayed Md Latiful |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291187/ https://www.ncbi.nlm.nih.gov/pubmed/32547903 http://dx.doi.org/10.1186/s40537-020-00313-w |
Ejemplares similares
-
An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
por: Bhattacharyya, D., et al.
Publicado: (2021) -
Kernel weighted least square approach for imputing missing values of metabolomics data
por: Kumar, Nishith, et al.
Publicado: (2021) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Some Classes of Logarithmic-Type Imputation Techniques for Handling Missing Data
por: Pandey, Awadhesh K., et al.
Publicado: (2021)