Cargando…

Efficacy of Lytic Phage Cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in Mixed-Species Planktonic Cultures and Biofilms

The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic efficacies of phage cocktails AB-SA01, AB-PA01, which target Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and P. aer...

Descripción completa

Detalles Bibliográficos
Autores principales: Kifelew, Legesse Garedew, Warner, Morgyn S., Morales, Sandra, Thomas, Nicky, Gordon, David L., Mitchell, James G., Speck, Peter G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291191/
https://www.ncbi.nlm.nih.gov/pubmed/32443619
http://dx.doi.org/10.3390/v12050559
Descripción
Sumario:The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic efficacies of phage cocktails AB-SA01, AB-PA01, which target Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and P. aeruginosa mixed-species planktonic and biofilm cultures. Green fluorescent protein (GFP)-labelled P. aeruginosa PAO1 and mCherry-labelled S. aureus KUB7 laboratory strains and clinical isolates were used as target bacteria. During real-time monitoring using fluorescence spectrophotometry, the density of mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 significantly decreased when treated by their respective phage cocktail, a mixture of phage cocktails, and gentamicin. The decrease in bacterial density measured by relative fluorescence strongly associated with the decline in bacterial cell counts. This microplate-based mixed-species culture treatment monitoring through spectrophotometry combine reproducibility, rapidity, and ease of management. It is amenable to high-throughput screening for phage cocktail efficacy evaluation. Each phage cocktail, the combination of the two phage cocktails, and tetracycline produced significant biofilm biomass reduction in mixed-species biofilms. This study result shows that these phage cocktails lyse their hosts in the presence of non-susceptible bacteria. These data support the use of phage cocktails therapy in infections with multiple bacterial species.