Cargando…
Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients
We used quantified electroencephalography (qEEG) to define the features of encephalopathy in patients released from the intensive care unit after severe illness from COVID-19. Artifact-free 120–300 s epoch lengths were visually identified and divided into 1 s windows with 10% overlap. Differential c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291269/ https://www.ncbi.nlm.nih.gov/pubmed/32443834 http://dx.doi.org/10.3390/jcm9051545 |
_version_ | 1783545871330181120 |
---|---|
author | Pastor, Jesús Vega-Zelaya, Lorena Martín Abad, Elena |
author_facet | Pastor, Jesús Vega-Zelaya, Lorena Martín Abad, Elena |
author_sort | Pastor, Jesús |
collection | PubMed |
description | We used quantified electroencephalography (qEEG) to define the features of encephalopathy in patients released from the intensive care unit after severe illness from COVID-19. Artifact-free 120–300 s epoch lengths were visually identified and divided into 1 s windows with 10% overlap. Differential channels were grouped by frontal, parieto-occipital, and temporal lobes. For every channel and window, the power spectrum was calculated and used to compute the area for delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. Furthermore, Shannon’s spectral entropy (SSE) and synchronization by Pearson’s correlation coefficient (ρ) were computed; cases of patients diagnosed with either infectious toxic encephalopathy (ENC) or post-cardiorespiratory arrest (CRA) encephalopathy were used for comparison. Visual inspection of EEGs of COVID patients showed a near-physiological pattern with scarce anomalies. The distribution of EEG bands was different for the three groups, with COVID midway between distributions of ENC and CRA; specifically, temporal lobes showed different distribution for EEG bands in COVID patients. Besides, SSE was higher and hemispheric connectivity lower for COVID. We objectively identified some numerical EEG features in severely ill COVID patients that can allow positive diagnosis of this encephalopathy. |
format | Online Article Text |
id | pubmed-7291269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72912692020-06-17 Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients Pastor, Jesús Vega-Zelaya, Lorena Martín Abad, Elena J Clin Med Article We used quantified electroencephalography (qEEG) to define the features of encephalopathy in patients released from the intensive care unit after severe illness from COVID-19. Artifact-free 120–300 s epoch lengths were visually identified and divided into 1 s windows with 10% overlap. Differential channels were grouped by frontal, parieto-occipital, and temporal lobes. For every channel and window, the power spectrum was calculated and used to compute the area for delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. Furthermore, Shannon’s spectral entropy (SSE) and synchronization by Pearson’s correlation coefficient (ρ) were computed; cases of patients diagnosed with either infectious toxic encephalopathy (ENC) or post-cardiorespiratory arrest (CRA) encephalopathy were used for comparison. Visual inspection of EEGs of COVID patients showed a near-physiological pattern with scarce anomalies. The distribution of EEG bands was different for the three groups, with COVID midway between distributions of ENC and CRA; specifically, temporal lobes showed different distribution for EEG bands in COVID patients. Besides, SSE was higher and hemispheric connectivity lower for COVID. We objectively identified some numerical EEG features in severely ill COVID patients that can allow positive diagnosis of this encephalopathy. MDPI 2020-05-20 /pmc/articles/PMC7291269/ /pubmed/32443834 http://dx.doi.org/10.3390/jcm9051545 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pastor, Jesús Vega-Zelaya, Lorena Martín Abad, Elena Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title | Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title_full | Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title_fullStr | Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title_full_unstemmed | Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title_short | Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients |
title_sort | specific eeg encephalopathy pattern in sars-cov-2 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291269/ https://www.ncbi.nlm.nih.gov/pubmed/32443834 http://dx.doi.org/10.3390/jcm9051545 |
work_keys_str_mv | AT pastorjesus specificeegencephalopathypatterninsarscov2patients AT vegazelayalorena specificeegencephalopathypatterninsarscov2patients AT martinabadelena specificeegencephalopathypatterninsarscov2patients |